pHBB1991

substances sheet

includesubstancetypeformulatop_bc_typebot_bc_type
1O2dissolvedDirichletDirichlet
1Hdissolved_pHDirichletDirichlet
1TCO2dissolved_pHDirichletDirichlet
1TH2Sdissolved_pHDirichletDirichlet
1TH3BO3dissolved_pHDirichletDirichlet

reactions sheet

includechecklabelequationrateOmega
11ROSHS{-} + 2*O2 = H{+} + SO4{2-}kOS*exp(-a*(x-x0)^2)

parameters sheet

includeclasstypeparametervalueunitcomment
1globalconstdepth0mwater depth
1globalconstsalinity20psubottom water salinity
1globalconsttemp20Celsiusbottom water temperature
1globalconstds_rho2.6g cm^-3dry sediment density
1gridconstL0.2cmmodel sediment section thickness
1gridconstNgrid200integernumber of model grid
1gridconstb2parameter in gridtran
1gridconstA1/2b*log((1+(exp(b)-1)*0.055/L)/(1+(exp(-b)-1)*0.055/L))parameter in gridtran
1gridfunctiongridtran0.055*(1+sinh(b*(x/L-A))/sinh(b*A))-0.05cmgrid transformation function
1porosityfunctionphi0.9999dimensionlessporosity as a function of depth
1porosityconstphi_Inf0.9999dimensionlessporosity at burial depth
1burialconstFsed1.00E-06g cm^-2 yr^-1total sediment flux
1bioturbationfunctionDbt0cm^2/yrbioburbation coefficient as a function of depth
1bioirrigationfunctionDbir0yr^-1bioirrigation coefficient as a function of depth
1BoundaryConditionconstO202.50E-04mmol cm^-3Concentration of O2 at the TOP of sediment column
1BoundaryConditionconstO2L0.00E+00mmol cm^-3Concentration of O2 at the BOTTOM of sediment column
1BoundaryConditionconstpH08.15free pH scalepH at the TOP of sediment column
1BoundaryConditionconstpHL7.39free pH scalepH at the BOTTOM of sediment column
1BoundaryConditionconstTCO202.00E-03mmol cm^-3Concentration of TCO2 at the TOP of sediment column
1BoundaryConditionconstTCO2L2.00E-03mmol cm^-3Concentration of TCO2 at the BOTTOM of sediment column
1BoundaryConditionconstTH2S00mmol cm^-3Concentration of TH2S at the TOP of sediment column
1BoundaryConditionconstTH2SL3.83E-04mmol cm^-3Concentration of TH2S at the BOTTOM of sediment column
1BoundaryConditionconstTH3BO304.90E-05mmol cm^-3Concentration of TH3BO3 at the TOP of sediment column
1BoundaryConditionconstTH3BO3L4.90E-05mmol cm^-3Concentration of TH3BO3 at the BOTTOM of sediment column
1Reactionconsta1.00E+04cm
1Reactionconstx05.00E-03cm
1ReactionconstkOS1.00E+00mmol cm^-3 yr^-1

Here we discuss the model pHBB1991. Boudreau (1991) created a diagenetic model with analytical solution to explain the pH change across the mat of sulfur oxidizing bacteria Beggiatoa in sediments from the Danish lagoons (Jørgensen and Revsbech, 1983). This model is now generated here using SedTrace. It includes one reaction, the oxidation of $HS^-$ by $O_2$. The kinetic rate is $k_{OS}e^{-a(x-x_0 )^2}$⁡, where $k_{OS}$ is the rate constant, $x$ is depth. The reaction is assumed to happen close to the mat at $x_0=0.005$ cm where dissolved $O_2$ disappears and $H_2S$ starts to increase, and a controls the sharpness of this interface. The model substances are dissolved $O_2$, $H^+$ and the EIs $TCO_2$, $TH_2S$ and $TH_3BO_3$. Their Dirichlet boundary conditions are specified at the top (-0.05 cm) and bottom (0.15 cm) of the model domain. Porosity is assumed to be constant and equal to 1 and thus no distinction is made between seawater above the SWI and the pore water below. The only transport mechanism is molecular diffusion.

The gridtran for the non-uniform grid is constructed using hyperbolic functions:

\[gridtran(x)=(x_0+0.05)(1+\dfrac{\sinh⁡(b(x/L-A))}{\sinh⁡(bA)})-0.05, \\ A=\dfrac{1}{2b} \ln\dfrac{⁡1+(e^b-1)(x_0+0.05)/L}{1+(e^{-b}-1)(x_0+0.05)/L}\]

where $L = 0.2$ cm is the length of the model domain and 0.05 cm is the depth offset. The resulting grid points are concentrated near $x_0 = 0.005$ cm, the degree of which is controlled by $b$.