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Core 17954 is located in the modern summer upwelling area in western South China Sea, its sediments recorded the variations of 
upwelling generated by East Asia Summer Monsoon (EASM) during MIS 3. Based on the strict age model of AMS 14C dating, the 
paleo-Sea Surface Temperature (SST) and Salinity (SSS) are reconstructed by pairing Mg/Ca-Paleothermometer and δ 18o of 
planktonic foraminifera Globigerinoides ruber (white s.s.). Results show that in Core 17954, the δ 18O record of G.ruber has sig-
nificant millennium fluctuations as the δ 18O records from NGRIP icecore and Hulu Cave stalagmites, this indicates that the cli-
mate changes of western SCS contains both signals from High Latitude of Northern Hemisphere as well as EASM. In order to get 
more information on upwelling changes, previous records of thermocline and foraminiferal primary productivity in Core 17954 
are collected, restudied and compared. Five distinct shallowing periods of thermocline (referred to as S1−S5) are identified in this 
study. In S1−S4, SST is lower and productivity is higher, these indicate to an enhanced upwelling and strengthened EASM during 
these periods. And the lower SSS, caused by increasing precipitation or fresh water input, also prove this standpoint. 
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Global climate changes of last glacial are characterized by 
millennium-scale fluctuations in oxygen isotope records. 
Dansgaard-Oeschger cycle (D-O cycle), which is character-
ized by alternation of interstadial (IS) and stadial in Green- 
land ice core [1], and Herinch event (H event), which is an 
event of sudden iceberg discharge into the North Atlantic 
[2–4], are identified to be the major components in the 
fluctuations. In later researches, such variations are widely 
discovered in different kinds of paleoclimate records be-
sides Greenland icecores and North Atlantic Ocean deep sea 
sediments, such as Mediterranean vegetation and Austrian 
Alps stalagmites from Europe; Loess, Hulu cave stalagmites 
and marine sediments in northern SCS from East Asia, and 
Cariaco Basin sediments from South America [5–11]. The 
wide distribution of D-O cycles and H events indicates that 
rapid climate changes are teleconnectional. Marine Isotope 
Stage 3 (MIS 3) is a relatively warm period in the last gla-

cial, the millennium-scale fluctuations also characterize it 
immensely. Investigation of rapid climate changes during 
MIS 3 should be carried out since it would greatly improve 
our understanding of sub-orbital scale climate changes. 

Evolution of the East Asian monsoon (EAM) during MIS 
3 has been copiously reported. Guliya ice core records show 
that the Qinghai-Tibet Plateau had a 40% increase of pre-
cipitation caused by the enhanced EASM at the end of MIS 
3 [12]. Results from the planktonic foraminiferal analysis in 
ODP Site1144 show that warm species decreased but pro-
ductivity of surface sea water increased simultaneously 
during 35−29 ka BP and that the winter monsoon would 
have strengthened in the interval. Besides, the increasing 
input of Pearl River represents an intense summer monsoon 
precipitation during 52−46 ka BP [13]. Furthermore, fluc-
tuations in percentage of montane conifers and Artemisia 
pollen indicate to abrupt vegetation and climate changes of 
Core 17940 in the northern SCS during MIS 3 [14]. So, 
based on these previous studies, the exploration of the pa-
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leoceanographic changes in the modern upwelling area of 
SCS [15] and the correlation between the upwelling and 
EASM are quite important. 

The calculations of temperature and salinity are key tools 
in Paleoceanography research. In the last decades, tempera-
ture calculations based on the oxygen isotope paleother-
mometer (δ 18O) [16] and foraminiferal transfer function 
[17] have both revealed their inevitable limitations. The 
alkenone (U37

k ) thermometer has also been found to be very 
sensitive to high temperature and can cause errors in tropi-
cal areas [18]. The most reliable temperature calculation is 
Mg/Ca-paleothermometer, which was first discovered in 
planktonic foraminiferal culture experiment carried out 
by Nürnberg [19]. And in order to remove the partly dis-
solution effect of foraminiferal shell, recent studies have 
focused on the calibration of Mg/Ca-paleothermometer by 
using sediment trap, core-tops and other methods 
[20–24]. Present studies also show that residue sea water 
oxygen isotope (δ 18Oresidue) is a good proxy of paleo-Sea 
Surface Salinity (SSS), which can be recovered from 
paleo-sea water oxygen isotope (δ 18Osw) by pairing Mg/Ca 
derived Sea Surface Temperature (SST) with oxygen iso-
tope paleothermometer [9,25–27]. In this study, we will 
use Mg/ Ca-paleothermometer and δ 18O of planktonic 
foraminifera Globigerinoides ruber (white s.s) to reconstruct 
the SST and SSS of the modern upwelling area in western 
SCS, and then study the changes of upwelling and related 
EASM during MIS 3 in comparison with the thermocline and 
foraminiferal productivity records. 

1  Materials and methods  

Core 17954 (14°47.8'N, 111°31.5'E) was retrieved from 
the modern summer upwelling region during the Chinese- 
German cooperation SONNON95 cruise to SCS in 1994 
(Figure 1). It was recovered at 1515 m water depth and 
contained three gravity cores, in which Core17954-2 is used 
in this study. It had a relatively homogeneous lithology of 
gray-green silty mud from continental slope sediments and 
recorded the sedimentary history over the past 200 ka without 
significant turbid deposition [28]. Core 17954 was subsam-
pled at 1.5 cm intervals for 100−398.5 cm (including MIS 3), 
217 samples were collected for microfossils paleontology 
identification and Mg/Ca ratio measurement. AMS 14C dates 
and oxygen isotope data of G. ruber refer to Yang et al. [28]. 

The radiocarbon dates younger than 21880 a BP are cali-
brated using MARINE04 [29], a standard ocean reservoir 
correction of 400 years and ∆R = 11 ± 40 a in SCS are ap-
plied by the algorithm of the calibration program [29], for 
older ages we use Fairbanks0107 calibration [30] and the 
applied ocean reservoir correction is 256 a in SCS [31]. 
Radiocarbon dates before and after calibrations are shown 
in Table 1 and Figure 2. 

 
Figure 1  Location of Core 17954 (Modern summer upwelling regions off 
eastern Vietnam are shaded [15]). 

About 30 tests of G.ruber (size fraction ranges from 
0.25 mm to 0.35 mm) are picked for Mg/Ca ratio meas-
urement by ICP-AES in the State Key Laboratory of Ma-
rine Geology of Tongji University. The relative standard 
deviation of Mg/Ca ratio is less than 0.3%. In order to sup-
ply a reliable Mg/Ca-paleothermometer estimation, three 
calibration equations are collated: core-tops calibration in 
Pacific Ocean from Dekens et al. [21], shell weight calibra-
tion from Rosenthal and Lohmann [22] and sediment trap 
calibration in SCS from Huang et al. [24]. Calibrated result 
of Dekens and Huang is almost entirely consistent with each 
other, although the output of Rosenthal and Lohmann shows 
a considerable offset during the Last Glacial Maximum 
(LGM), it still reveals a strong agreement during MIS 3. So 
we chose the calibration of Dekens to estimate our 
Mg/Ca-SST: Mg/Ca=0.38 exp [0.09(SST−0.61d−1.6°C)], 
where the Mg/Ca is in mmol/mol and SST is in °C. d is wa-
ter depths (in km) The standard deviation of this equation is 
1.2°C [21].  

For the purpose of getting a more accurate paleosalinity 
record, we use the G.ruber (white) paleotemperature equa-
tion of Mulitza et al. [32] to estimate the δ 18Osw: δ 18Osw = 
(SST−14.2)/4.44+δ 18O, and convert PDB standard to 
SMOW standard by adding 0.27‰. Afterwards, a high- 
resolution sea level changes record from Arz et al. [33] and 
the δ 18Osw variations caused by global sea level changes 
from Waelbroeck et al. (0.00846‰/m sea level) [34] are 
applied to removing the contribution of sea level changes to 
δ 18Osw, and then gets the δ 18Oresidue as a relative robust 
proxy of SSS [9, 27]. 
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1) National Oceanographic Data Center. World Ocean Atlas 2005. http://www.nodc.noaa.gov/OC5/WOA05F/woa05f.html 

Table1  Calibration of AMS 14C dates from Core 17954 

 Lab ID Depth (cm) Species AMS14C age (a BP) Calibrated age (cal a BP) Error (a) Method 
1 BA05861 104.5 G. ruber 14810±50 17280 227 Marine04 [29] 
2 BA05862 141.5 G. ruber 19950±60 23313 234 Marine04 [29] 
3 BA05863 176.5 G. ruber 25180±80 29913 189 Fairbanks0107 [30]
4 BA05864 223 G. ruber 29960±120 35124 176 Fairbanks0107 [30]
5 BA05865 260.5 G. ruber 37920±180 42706 234 Fairbanks0107 [30]
6 BA05935 302.5 G. ruber 39800±200 44325 256 Fairbanks0107 [30]

 

 
Figure 2  Western SCS δ 18O record of G.ruber versus depth in Core 17954. Triangles denote depths of AMS radiocarbon dates and crosses denote location 
of two age control points identified from Heinrich evens (H5 and H6). 

2  Results and discussion  

2.1  Age model and δ  18O record of Core 17954 

In order to get a longer and dependable age model, we 
compare δ  18O curve of G.ruber from Core 17954 with the 
δ  18O curves from NGRIP icecore (North Greenland Icecore 
Project members, 2004) [35] and Hulu Cave stalagmites [8]. 
By comparing, we discard the unreliable 14C age at 302.5 
cm. In addition, H5 and H6 events in Core 17954 are identi-
fied and are used as another two event age control points. 
Defined at 284.5 cm, H5 event corresponds to H5’ of Hulu 
Cave and H5 of NGRIP with the age of 48 ka. Meanwhile, 
H6 event, defined at 356.5 cm, corresponds to H6 from 
Hulu Cave and NGRIP both with the age of 60 ka [8,35] 
(Figure 2). 

Based on calibrated 14C dates and event age control 
points, linear interpolation is used to construct the age 
model of Core 17954 (Figure 3). The average sedimentation 
rate is 5.9 cm/ka. Samples used for this study ranged be-
tween 17 ka and 68 ka (but in our discussion, we just focus 
on the interval from 20 ka BP to 65 ka BP, including MIS 
3).  

Millennium-scale rapid fluctuations also characterize 
δ 18O record of Core 17954. Identification and age determi-
nation of the major H evens and D-O cycles in Core 17954 
are accomplished by comparison (Figure 3). Overall, δ 18O 
curve of Core 17954 is much more similar to the curve from 
Hulu Cave than NGRIP. While recent researches have 
shown that the mechanism of millennium-scale variations 
has a key relationship to monsoonsystem in low latitude [11], 
the similarity of climate record between Core 17954 and 

Hulu Cave may reveal the analogous mechanism, because the 
δ 18O of Hulu Cave stalagmites is a direct indicator for the 
precipitation brought by EAM [8]. Moreover, in previous 
studies, discovery of orbital frequencies of 41 ka and 23 ka in 
δ 18O record of Core 17954 [36] demonstrates the influence of 
high-latitude Northern Hemisphere climate on western SCS. 
So, the climate changes in the western SCS are significantly 
impacted by both low and high latitude signals 

2.2  Mg/Ca-SST and the δ 18 Oresidue changes 

Mg/Ca derived SST in Core 17954 ranges from 23.1°C to 
26.7°C, and averages about 25.0°C (Figure 4(b)). Before 50 
ka BP, larger amplitude in SST is revealed. During the LGM 
(~21.4 ka), the SST is 23.0°C, about 4.5°C lower than mod-
ern annual average temperature of 27.5°C1). Similaly, 4−5°C 
cooling during LGM is also obtained in site 1145 [9]. 
However, in H events, decrease of SST in Core 17954 is 
less than 2°C, that is much smaller than in other sea areas 
[11]. δ 18Oresidue changed from −0.77‰ to 0.94‰, and aver-
ages about 0.2‰ during MIS 3 (Figure 4(c)). In both curves 
of δ 18Oresidue and SST, obvious millennium-scale fluctuations 
are unveiled (Figure 4(b), (c)), in which the appearance of 
relative lower (higher) SSS/δ 18Oresidue and SST has a strong 
correspondence to interstadials (stadials) (Figure 4). 

2.3  Upwelling and EASM changes indicated by mul- 
tiple proxies  

To investigate the changes of upwelling and EASM in west-
ern SCS, foraminiferal transfer functions had already been 
used to reconstruct the SST, thermocline depth, foraminif-
eral productivity and other proxies of upwelling in the for 
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Figure 3  Oxygen isotope stratigraphy of Core 17954 with the comparison of oxygen isotope records from Greenland (NGRIP) and Hulu Cave between 
20−65 ka [8,35]. IS events and H events are indicated (H events in all curves are denoted by rectangles and filled with light grey). 

mer studies, results show that EASM was strong during 
interglacials and declined gradually since MIS5 [28,36–38]. 

In this study, these upwelling proxies are indispensable for 
understanding the appearance of relative lower (higher) SSS/ 
δ 18Oresidue and SST during interstadials (stadials). Occurrence 
of lower (higher) SSS during interstadials (stadials) was also 
found in ODP Site 1145 and Site 1144 in northern SCS, as 
well as Sulu Sea and the western Pacific warm pool [9,39– 
41], it was thought to be caused by the increasing (decreasing) 
of precipitation brought by super El Niño-Southern Oscilla-
tion (ENSO) and to connect to EAM [41]. In these areas, the 
most important influence of SSS is precipitate-evaporate 
processing controlled by ESM directly. So, in the similar 
oceanographic situations, SSS changes of Core 17954 should 
have the same mechanism that is the appearance of lower 
SSS during interstails (stadials) was caused by increasing 
precipitation or fresh water input linked to EASM. 

However, SST record of Core 17954 shows quite an op-
posite way of changing compared to other areas in SCS. 
This contradiction strongly indicates to the significant in-
fluence of upwelling on Core 17954 because these areas are 
in one sea basin and no other consequential factors can 
cause such contradiction. 

Designed to get further information, we restudy the data 
of thermocline and foraminiferal primary productivity from 
Yang et al. [28] by adapting the records to our age model. 
We find there are five distinct shallowing periods of ther-
mocline in Core 17954, which are 25.5−26.8 ka BP, 
30.8−32.3 ka BP, 36.3−39.3 ka BP, 48−50.6 ka BP and 
55.7−57 ka BP, and are referred to as S1−S5 orderly (Figure 

4(d)). Productivity derived from percentage content of high 
productivity planktonic foraminiferal species Neoglobo-
quadrina dutertrei and Globigerina bulloides has a mutual 
agreement to thermocline result (Figure 4(d), (e)). Like SST 
and SSS, millennium-scale variations can be easily seen in 
thermocline and productivity results too. By comparing to 
δ 18O curve, S1−S4 can orderly correlate to the interstadial 
after IS3, IS5, IS8 and IS13, and only S5 correlates to the 
stadial between IS15 and IS16. In these interstadials, pro-
ductivity is also relative high. So, we argue that in S1−S4, 
which are synchronous with interstadials, the presences of 
shallower thermocline, lower SST and higher productivity, 
is caused by enhanced upwelling. And the coexisted lower 
SSS is generated by increasing precipitation or fresh water 
input. Both these two explanations demonstrate that EASM 
was intense during S1−S4. This interpretation also coincides 
with the result from Hulu Cave which indicates to an en-
hancement of EASM during interstadials [8]. However, we 
cannot know whether the upwelling was increased or not 
during S5, for it is synchronous with the stadial and the cold 
climate condition can also bring the same paleoceanographic 
changes. At last, unfortunately limited by the time resolution 
of our materials, discussions of paleoceanographic proxies and 
their relationship to EASM are confined to S1−S4 which have 
obvious shallowing thermocline to identify. As to the ap-
pearances of lower (higher) SST and SSS in other intersta- 
dials (stadials), whether they have a close relationship to 
strengthened (weakened) EASM or not cannot be clearly seen; 
further study with higher resolution materials will resolve this 
problem.  
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Figure 4  Multiple proxies indicated paleoceanographic changes of upper ocean structure from Core 17954 with comparison to δ 18O record from Hulu Cave. 
(a) δ 18O record from Hulu Cave [8]. (b) Mg/Ca-SST record from Core 17954. (c) δ 18Oresidue (proxy of SSS) record from Core 17954. (d) Thermocline depth derived 
from foraminiferal transfer function from Core 17954 [28]. (e) Productivity derived from percentage content of high productivity planktonic foraminiferal species 
Neogloboquadrina dutertrei and Globigerina bulloides from Core 17954 [28]. (f) δ 18O record of G. ruber from Core 17954. Rectangle areas indicate to the period of 
shallowing thermocline (S1−S5). Light grey is filled in S1−S4 and dark grey is filled in S5. 

Meanwhile, our results hint that to use SSS as a regional 
proxy of upwelling is impropriate. SSS in low-latitude sea 
areas are controlled by atmosphere-ocean heat and vapour 
transitions directly; the influence of upwelling seems to be 
inconsequential. At present, many studies attempt to use 
δ 18Oresidue as a proxy of salinity to represent evaporation- 
precipitation changes, and particularly focus on the study of 
the strong influence on hydrological cycles and precipitation 
brought by Intertropical Convergence Zone (ITCZ) [11,42, 
43]. Study of the sedimentary records from Cariaco Basin 
showed that when the H evens occurred, the southward shift 
of ITCZ in the Central America region could cause quite 
contrary changes of salinity on different side of Panama 
Strait: in Eastern Topical Pacific, seawater would be saltier 
but in Caribbean Sea it would be fresher. Thus the North At-

lantic Deep Water (NADW) could not be formed because the 
Gulf Stream whose water source is from Caribbean Sea was 
fresher than usual. Then the Great Ocean Conveyor broke off 
and millennium-scale abrupt climate changes happened [11]. 
The standpoint of which the thermohaline variations can 
cause rapid climate changes is widely supported [44]. The 
modeling of Schiller et al. confirmed that the increase of ra-
dial temperature gradient in North Hemisphere would cause 
southward migration of ITCZ in Atlantic Ocean [45]. Paleo-
ceanographic records from Core 17954 may note the same 
point: during H events, SST decreased quite less than Eastern 
Tropical Pacific Ocean, so the increase of radial temperature 
gradient in North Hemisphere might really exist during H 
events. But whether such changes link to long-term ENSO 
[41,46] or not still needs further research. 
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3  Conclusions 

Based on the estimation of SST and δ 18Oresidue (the proxy of 
SSS), investigation of the paleoceanographic changes of 
upper water in western SCS and their relation to EASM are 
conducted. 

(1) The δ 18O record of G. ruber is characterized by mil-
lennium-scale variations in Core 17954. Heinrich events 
(H2−H6) and D-O cycles (IS3−17) are identified by com-
paring to the δ 18O curves from Greenland NGRIP icecore 
and Hulu Cave stalagmites. The climate changes in the 
western SCS contain both northern high latitude signal and 
tropical-low latitude signal, but the latter may be more im-
portant since they are connected by EASM and the precipi-
tation it brought.  

(2) SST and SSS records of Core 17954 both reveal dis-
tinct millennium-scale variations; in the interstadials (stadi-
als) SSS and SSS both are lower (higher). 

(3) The thermocline record of Core 17954 has five obvi-
ous shallowing periods (S1−S5), in which S1−S4 coincide 
with the interstadials and are accompanied by lower SST 
and higher productivity. This demonstrates that the upwell-
ing was strengthened in these intervals, while the lower SSS 
indicates that the precipitation increased additionally; both 
suggest that the EASM was relatively intense in these peri-
ods. 
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